
International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 641
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

1.INTRODUCTION

Mobile computing has got better with

lighter components, better chips and faster
processors. But the Achilles heel of a laptop has
remained its battery. Modern graphic intensive
operating systems and resource hungry
applications are cutting down the life of your
laptop’s battery every day. The average battery life
per con-tinuous use still stands at a maximum of
three to four hours. So, a fast depleting battery
could very swiftly put the crutches on our ‘mobile’
road trip. These systems require low power
consumption to keep the operational time between
the recharging of batteries long. One of the ways to
achieve the above goal is frequency scaling the
CPU based on CPU utilization.

 Frequency scaling reduces the number of
instructions a processor can issue in a given
amount of time, thus reducing performance.
Hence, it is generally used when the workload is
not CPU-bound. It is proposed that CPU adapts
frequency based on workload through a simple
user feedback mechanism and rely only on CPU
utilization. As a result of frequency scaling, power
consumption will be reduced. It allows to save
energy because usually neither program
performance nor power consumption scale linearly
with the processor frequency.

CPUfreq [1] refers to the kernel infrastructure that
implements CPU frequency scaling. CPUfreq is the
subsystem of the Linux subsystem that allows
clock speed to be explicitly set on mobile
processors. It is included in all recent kernels and
enabled by default by recent distributions.
Frequency scaling is usually handled by a
governor program, according to system or user
specific preferences. Likewise, CPUfreqd [2] is a
very powerful and customizable daemon which
can alter CPU frequency (and other ACPI settings)
based not only on processor load, but also on
battery level, temperature, power source, and what
programs are running.

Rest of this section introduces the problem
statement, similar systems and gap analysis.
Section 2 details the system design used for
implementing the application.Section 3 details the
implementation of various elements described in
the design.This section includes the algorithm used
for CPU scaling policy. Performance met-rics and
results are presented in Section 4. Section 5
presents some conclusions and scope for further
development.

1.1 PROBLEM STATEMENT

The paper is aimed at developing a CPU
frequency scaling application for Linux.The paper

 Frequency Scaling of CPU by Utilization

KEERTHI.R
 CHRIST UNIVERSITY,BANGALORE

Abstract- Frequency scaling enables the kernel to issue instructions that slows the CPU (actually to reduce the CPU’s clock speed) in a notebook
computer when not in use. It will raise and lower the frequency of your processor depending on a set level of demand being made on the
processor at the time. One of the reasons we want to do this would be to save energy and thus can save battery life on a laptop. Our paper makes
use of the Linux kernel-Level governors for this purpose. We have devised a scaling algorithm that decides upon the frequency that dynamically
needs to be set on a particular CPU core based on the utilization of the CPU core, unlike the existing ‘ondemand kernel governor’ that dynamically
sets frequency of all the available CPU cores but not the one required in particular. This paper also uses benchmark to identify worst case
performance loss when doing dynamic frequency scaling using Linux kernel governors and identifies average reaction time of a governor to CPU
load changes. The battery-statistics is gathered and plotted to know about battery consumption and a method to decrease the battery consumption
period with frequency scaling is formulated

Keywords- Frequency scaling, cpu frequency, gap analysis ,governors

 —————————— ——————————

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 642
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

caters to the need of a dynamic CPU frequency
scaling based on the CPU utilization. The aim of
this dynamic scaling model is to scale the CPU
speed according to the workload (or according to a
certain threshold) and that too without locking
down the speed of CPU after scaling down.
Amidst all research work done, it will be a system
with an improvement over the existing systems.
The paper also aims at making efficient
consumption of the battery.

1.2 SIMILAR SYSTEMS AND GAP
ANALYSIS

CPU frequency Scaling application is
available for some Linux distros to scale the CPU
frequency according to the CPU utilization. Some
of the available software in this context are

1. CPU Frequency Monitor : The CPU
Frequency Scaling Monitor provides a
convenient way to monitor the CPU
Frequency Scaling for each CPU.
When there is no CPU frequency
scaling support in the system, the
CPU Frequency Scaling Monitor only
displays the current CPU frequency.
The state of the progress bar
represents the current CPU frequency
with respect to the maximum
frequency. By default the CPU
Frequency Scaling Monitor displays
the current CPU frequency as a value
in Hertz (the standard measure of
frequency).

2. PowerNow [3] : PowerNow is speed

throttling and power saving
technology of AMD’s processors
used in laptops. The CPU’s clock
speed and VCore are automatically
decreased when the computer is
under low load or idle, to save
battery power, reduce heat and noise.
The lifetime of the CPU is also
extended because of reduced
electromigration, which varies
exponentially with temperature. The
technology is a concept similar to
Intel’s SpeedStep technology.The

adaptation of PowerNow for AMD’s
desktop CPUs is called Cool‘n’Quiet.

Gap Analysis

The CPU Frequency Scaling Monitor

mostly used in the linux for dynamic CPU
frequency scaling. However these applications
using throttling the CPU through ACPI ‘T’ states is
generally useless for power consumption reduction
nowadays. It is an artifact of the past, when there
was no clock frequency scaling and were mostly
not implemented or did not exist.

Throttling does not decrease clock

frequency at all, and it can even increase power
consumption in a modern CPU capable of ACPI ‘C’
states [4], as it can interfere with the CPU reaching
the higher C states. By frequency scaling the CPU
downclocks to the lowest multiplier and remains
locked in low speed. This happens irrespective of
the scaling method in use (kernelspace or
userspace) and of the frequency governor selected
(ondemand, performance, etc.). It is also worth to
mention here that the existing models used for
determining frequency scaling algorithms are
computationally expensive.

2. SYSTEM ARCHITECTURE

2.1 ARCHITECTURE

The system architecture is a 3-Level
frequency management system where User-Level,
Kernel-Level and architecture specific intricacies
are handled at each level respectively. The levels
interact with each other through interfaces to get
control from user view to driver specific view of
frequency management. The three levels are:

(a) User-Level
 The user having the root permissions can
make choices here from list of available
frequencies/governors. The daemon program takes
these inputs from user interface and passes it to the
next level.

(b) Kernel-Level
 The actual frequency scaling policies are
defined here in the form of frequency scaling
governors. These are the predefined policies

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 643
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

implemented in CPUfreq framework. This a
gateway for frequency scaling.

(c) Driver-Level
 In this level hardware drivers/acpi
modules are present. Finally, CPU frequency is
altered at this level.

Figure 1: 3-Level Architecture For CPU Frequency
Scaling

1. User requests for the desired frequency
from the available CPU frequencies list.

2. User request is taken by the User-Level
governors which will in turn request for a
frequency scaling policy through daemon
(viz. a program which continuously
checks for the user action and tracks the
CPU utilization. In the absence of any user
action it will automatically scale the CPU
frequency based on the utilization).

3. The required utilization parameters (like
frequency and temperature) are fetched by
the daemon by using the Kernel-Level
governors which in turn uses the CPU
specific drivers for the required data.

4. Once the required data is fetched the
Kernel-Level governor will compare the

fetched data to the pre-defined threshold
values.

5. After the comparison the appropriate

Kernel-Level policy is set.

6. The selected governor now sets the CPU
frequency to nearest possible one amongst
its frequencies range.

2.2 DETAILED ARCHITECTURE

The prime components of this 3-Level
infrastructure are governors. The governor decides
what frequency should be used using CPUfreq
driver to actually switch the CPU’s policy. The
detailed description [5] of system architecture is as
follows:

1. User-Level governors: The user-level
governor give control to the user
(superuser or root) to set the frequency on
a particular platform. This userspace
interface could then be used by the
daemons running in userland to manage
the CPU frequency over time, depending
on the load. There are multiple userspace

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 644
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

programs, like cpuspeed and powersaved
that can use userspace governor interface
and change the frequency based on load.
The userspace governors would
typically sample the utilization every few
seconds, and then take a decision on what
frequency to go to for the next sample
interval. This method of changing the
frequency operates properly with almost
any frequency/voltage-hanginghardware.

2. Kernel-Level governors: The CPUfreq

infrastructure allows to frequency scaling
policy governors, which can change the
CPU frequency based on different criteria
such as CPU usage. Which governor to
use depends a lot on hardware and
workload. Everyone has different needs
and expectations from their system, and
there is no one-size-fits-all governor. Each
governor has its own individual
advantages and disadvantages.
Understanding how each governor
behaves is the key to best leveraging the
most power savings and performance
from your hardware.Below is a brief
description for four in-kernel governors
used in CPUfreq:-

• Performance governor: This governor

force the CPU to use the highest available
clock frequency. This frequency is
statically set and does not change. This
governor is complementary to and most
often utilized in conjunction with the
powersave governor.

• Userspace governor: This governor

exports the available frequency in
formation to the user level (through the
/sys file system) and permits user-space
control of the CPU frequency. All user-
space dynamic CPU-frequency governors,
which run as daemons and control the
CPU speed,use this governor as their
basis. The CPUfreq governor ‘userspace’
allows the user, or any userspace program
running with UID ‘root’, to set the CPU to
a specific frequency available in the CPU-
device directory.The userspace governor

allows the user to define policy. It is the
most customizable of any of the
governors. It may save even more power,
or yield even more performance, but this
is largelydependent on how it is
configured.

• Ondemand governor: The CPUfreq

governor ‘ondemand’ sets the CPU
frequency depending on the current
usage. To do this the CPU must have the
capability to switch the frequency very
quickly. This gov ernor is a dynamic
governor, it allows the system to achieve
maximum performance if the system load
is high and allows the system to achieve
maximum power savings if the system is
idle. The ondemand governor will step
from one frequency to the next with
respect to system load. The downside of
this governor is latency. The system
requires some time to ramp up or down in
clock frequency.

• Conservative: The CPUfreq governor

‘conservative’, much like the ‘on demand’
governor, sets the CPU depending on the
current usage. It differs in behaviour from
later, as it gracefully increases and
decreases the CPU speed rather than
jumping to max speed the moment there is
any load on the CPU. This behaviour is
more suitable in a battery pow ered
environment. The governor is tweaked in
the same manner as the ‘ondemand’
governor.

3. CPUfreq module (generic framework):

The CPUfreq module provides a common
interface to the various low level, CPU-
specific frequency-control technologies
and high-level CPU frequency-controlling
policies. CPUfreq decouples the CPU
frequency-controlling mechanisms and
policies and helps in independent
development of the two. It also provides
some standard interfaces to the user, with
which the user can choose the policy
governor and set parameters for that
particular policy governor.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 645
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

4. CPU-specific drivers: Various low-level,

CPU-specific drivers implement various
CPU frequency-changing technologies,
such as Intel SpeedStep Technology,
Enhanced Intel SpeedStep Technology,
and Pentium 4 processor clock
modulation. On a given platform, one or
more frequency-modulation technologies
can be supported, and a proper driver
must be loaded for the platform to
perform efficient frequency changes. The
CPUfreq infrastructure allows the user to
use one CPU-specific driver per platform.

 Below are some of them used in CPUfreq:-

• SpeedStep: Intel’s SpeedStep Technology
reduces the latency associated with
changing the voltage/frequency pair
(referred to as P-state). This aids for the
frequency transitions to be practically
undertaken more often, which enables
more-granular demand-based switching
and the op timization of the
power/performance balance based on
demand.

• ACPI (Advanced Configuration and

Power Interface): Usage of the acpi-
CPUfreq reduces the voltage along with
CPU clock frequency, allowing less
power consumption and heat output for
each unit reduction in performance.

• p4-Clockmod: p4-clockmod driver in this

context is used to reduce the clock
frequency of a CPU, but it does not
reduce the voltage.

2.3 TECHNOLOGIES

Implementation of the frequency scaling
software was done with the following set of
standard technologies:

• Development Language:- C
• Compiler:- gcc
• Linux Kernel version:-2.6.xx-generic
• Platform:- Ubuntu 11.10 Linux Desktop

OS

• Libraries:- Gtk library, CPUfreq library,
pthread library

3.IMPLEMENTATION

We have implemented the proposed
system architecture in three levels

1. User-Level
2. Kernel-Level
3. CPU-Specific-Level

3.1 USER-LEVEL

At the User-Level a daemon is
implemented which is responsible for frequency
scaling of the CPU.
 A daemon is a process that runs in the
background automatically and is independent of
control from all terminals ,i.e., not being under the
direct control of an
interactive user. Since a daemon does not have a
controlling terminal, it cannot just fprintf to stderr.
So, we are using syslog system call which in turn
uses syslogd, is the daemon that implements the
system logging facility.

Daemon works in a way that it reads input
parameters such as frequency, core number and
governor given by the interactive user using
graphical or command line interface. It also
calculates each core utilization using get util script.
So, daemon keeps on working in the background
and keeps on checking whether parameters are
input or not. The daemon then works accordingly
if parameters are input or not and if not then work
based on utilization of different cores in the
system.

Script File: The utilization of each individual CPU
is obtained by running shell script get util.sh. The
script reads /proc/stat file. It contains the number
of CPU ticks performed since the system has been
booted. A typical snapshot of /proc/stat [6] [7] file
is given in Table 1

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 646
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

The numbers in each line identify the amount of
time the CPU has spent performing different kinds
of work. Time units are in USER HZ or Jiffies
(typically hundredths of a second on most
architectures, use sysconf (SC CLK TCK) to obtain
the right value).

The meanings of the columns are as follows, from
left to right:

1. user: normal processes executing in user
mode

2. nice: niced processes executing in user
mode

3. system: processes executing in kernel
mode

4. idle: twiddling thumbs
5. iowait: waiting for I/O to complete
6. irq: servicing interrupts
7. softirq: servicing softirqs

Since Linux 2.6.11, there is an eighth column, steal
- stolen time, which is the time spent in other
operating systems when running in a virtualized
environment.

Since Linux 2.6.24, there is a ninth column, guest,
which is the time spent running a virtual CPU for
guest operating systems under the control of the
Linux kernel.

So, to get utilization of CPU core first we extracted
the amount of time core remains idle from 5th
column and total time, i.e., addition of all time
units that a CPU has spent at that instant. Then we
took two snapshots of this file at two different
instants and took the difference to find how much
percentage of time core was idle during that period
using following formula:

∴ utilization of core(%) = 100 - idle period

1. GUI :

GUI has been implemented using the GTK
2.0 [8] environment with C interface. GTK (GIMP
Toolkit) is a library for creating graphical user
interfaces.It is licensed using the LGPL license.

• GTK Widgets: The GUI makes use of the
GTK Widgets viz Radio but tons, labels
used to select the system frequencies
under one column, CPU core under the
other column and display the CPU core
and their current frequencies in the last
column.

• C Interface: The C interface is used to get

system details from the
/sys/devices/system/cpu interface to
obtain the system defined frequency
values and also the current CPU core
frequency and the scaling governor. Its
also writes the user selected values from
the GUI into a file which is used by the
daemon to scale the CPU frequencies.

A typical GUI implementation of client interface
with gtk2.0.

Figure 3: User Interface For CPU Frequency
Scaling

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 647
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

2. Command Line Interface :

The user can change the frequency of the
CPU as desired through command line interface.
The command line interface implemented accepts
user input viz, desired frequency, cpu core number
and governor parameters. This interface will check
for valid frequencies that can be set on a CPU core.
The valid scalable CPU frequencies are obtained
from the below file

$/sys/devices/system/cpu/cpu(k)/cpufreq/scaling
available frequencies where k is the number of the
CPU core.

This file gives those frequencies on which the CPU
core frequency can be set.Since the number of cores
are different for different systems we first obtain
the number of available cores in a particular
system using the below command

$ sysconf(SC NPROCESSORS ONLN)

This interface checks for the available cores in a
system for which frequency can be scaled. All
necessary conditions are checked in which user can
input only those frequencies to which a core can be
scaled. If the user inputs frequency greater than the
largest available frequency, the core will be scaled
to a the largest scalable available frequency for that
particular core and if the user tries to input a
frequency less than the lowest available frequency
than the core will
be scaled to the lowest available frequency. In
addition, it checks another condition in which if
the user inputs both frequency and governor. If
both are given then by default userspace governor
will be set.

3.2 KERNEL-LEVEL

In the kernel-level implementation firstly
all the governors are loaded by using the acpi
interface, then the set policy() is called to scale the
CPU frequency in two conditions viz, with user-
input and without user-input.

Implementation of the CPUfreq governors is done
using the ACPI interface.

1. ACPI Interface :

 ACPI (Advanced Configuration and

Power Interface) is an open industry speci fication
establishing industry-standard interfaces for OS
directed configuration and power management on
laptops, desktops, and servers.
ACPI [9] enables new power management
technology to evolve independently in operating
systems and hardware while ensuring that they
continue to work together. Before selecting and
configuring a CPUfreq governor, first appropriate
CPUfreq driver is added. Below are the steps used
to set up the CPUfreq:

1.CPUfreq Setup

• How to Add a CPUfreq Driver Use the
following command to view which
CPUfreq drivers are available for your
system:

$ls/lib/modules/[kernelversion]/kernel/arch/[archit
ecture]/kernel/cpu/cpufreq/Sample Output: e
powersaver.ko p4-clockmod.ko pcc-cpufreq.ko

Use modprobe to add the appropriate
CPUfreq driver.

$ modprobe [CPUfreq driver]

When using the above command, be
sure to remove the .ko filename
suffix

• Enabling a CPUfreq Governor If a specific

governor is not listed as available for
your CPU, use modprobe to enable the
governor you wish to use. For example, if
the ondemand governor is not available
for your CPU, use the following
command:

$ modprobe cpufreq ondemand

Once a governor is listed as available for
your CPU, you can enable it

using:

$echo[governor]>/sys/devices/system/cpu/[cpu
ID]/cpufreq/scaling governor

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 648
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

2. Set Policy()

 For scaling the CPU frequency, we make
use of the Kernel-Level governors (mentioned in
the detailed architecture in section) and define a
policy for the purpose which is executed by the
daemon. Before applying the policy the the
daemon first checks is the user is trying to set the
frequency manually through the GUI or through
the command line interface. This condition is
checked by setting a User flag which is set to 1 in
case of user input given, if not it remains set to 0.

Algorithm used for frequency scaling is mentioned
below in Algorithm 1.

Algorithm 1: (Set Policy)
1 Set Policy()
2 # DEFINE lower threshold=20;
3 # DEFINE higher threshold=80;
4 # DEFINE UserFlag=0;
5 utilization = read utilization file;
6frequency,governor,cpuno=read(freq,gov,cpuno);
7 if (UserFlag==0) then
8 if (0 < utilization < lower threshold)
 then
9 then governor=“powersave”;
10 end
11 if (lower threshold < utilization <
 higher threshold) then
12 then governor = “ondemand”;
13 end
14 if (utilization > higher threshold) then
15 then governor=“performance”;
16 end
17 end
18 else
19 set governor= “userspace”;
20 frequency = find nearest possible frequency
(from system);
21 if (cpuno==null) then
22 do for all cpu(frequency,governor);
23 end
24 else
25 do for selected cpuno(frequency,governor);
26 display current settings now;
27 end
28 end

Line 1-4 defines the threshold values for changing
the governor based on utilization.

Line 5-6 reads the utilization of cpu core and input
parameters like frequency, governor if user has
provided.

Line 7-17 specifies the case when input is not
specified by the user then upper and lower
threshold for CPU utilization are used to select the
frequency scaling policy. If utilization is less than
lower threshold, then ‘powersave’ governor is
used and if utilization is between lower threshold
and upper threshold then governor is set to
‘ondemand’ and if the utilization is greater than
upper threshold then governor is set to
‘performance’.

Line 18-28 specifies case when user has given input
then frequency is scaled using ‘userspace’
governor for particular core or for all cores
depends upon user input.

3.3 CPU-SPECIFIC LEVEL

At the CPU specific level we make use of

the battery status to improve the frequency scaling
of the CPU.

1. Battery Status Check- The status of the
battery can be obtained from the interface
/proc/acpi/battery.Mainly there are three
possible states of battery for device which
can work on battery. These are-

(a) Charging- This means that the battery is

currently charging, which intern means
that the device is plugged in.

(b) Charged- This means that the battery
 is charged, but the device is still
 plugged in for charging.

(c) Discharging- This means that the

device is not plugged in for charging,
 and the battery is discharging.

There is a file ”/proc/acpi/battery/BAT0/state”
maintained by the OS which logs the current
battery status.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 649
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

We are reading the status from this file, and
according to that status we are implementing our
policies. The policy is that if the status is either
‘charging’ or ‘charged’, then we are just setting the
governor to performance mode, else, i.e., the status
is ‘discharging’, we will set the governor to
ondemand.

2. The above set policy() algorithm to scale
the CPU frequency is modified according
to current the battery status. Refer
Algorithm 2

Algorithm 2: (Set Policy with battery status check)

1 Set Policy()
2 # DEFINE lower threshold=20;
3 # DEFINE higher threshold=80;
4 # DEFINE UserFlag=0;
5 utilization = read utilization file;
6 frequency,governor,cpuno=read(freq, gov,
cpuno);
7 if (UserFlag==0) then
8 if (battery status==“charging”||battery
status==“charged”) then
9 set governor=“performance”;
10 end
11 else
12 if (0 < utilization < lower threshold) then
13 governor=“powersave”;
14 end
15 if (lower threshold < utilization < higher threshold)
then
16 governor = “ondemand”;
17 end
18 if (utilization > higher threshold) then
19 governor=“performance”;
20 end
21 end
22 end
23 else
24 set governor=“userspace”;
25 frequency = find nearest possible frequency
(from system);
26 if (cpuno==null) then
27 do for all cpu(frequency,governor);
28 end
29 else
30 do for selected cpuno(frequency,governor);
31 display current settings now;

32 end
33 end

This algorithm is an add on over previous
algorithm. Line 8-10 takes into account the battery
state information and in case if it is charging or
charged then governing policy is tuned to be
‘performance’ and while discharging utilization
based algorithm is applied same as before.

3.4 WORKING OF 3-LEVEL
IMPLEMENTATION OF CPU
FREQUENCY SCALING

Figure 4: Working Of 3-Level Implementation

1. In the first step the daemon calls for shell
script ‘get util.sh’ to fetch the utilization
of each CPU.

2. The utilization is then read from file

‘loadstat.txt’ and utilization parameters
are returned back to the daemon in this
stage.

3. Next the daemon monitors if any user

input is being given via GUI or command
line interface written into the file
‘Input.txt’. sets the CPU frequency
accordingly.

4. In the absence of user input it checks for
the battery states viz ‘charged’ or
‘charging’ and sets the governor as
‘Performance’ governor. For any other

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 650
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

battery status and absence of user input it
gets the CPU utilization from ‘get util.sh’
file.

5. The ‘set policy()’ method is called to set
the CPU frequency accordingly. The above
steps are repeated by daemon running in
background continuously. Any changes in
current frequencies are reflected back to
user in GTK applet.

4.OBSERVATIONS AND RESULTS

4.1FREQUENCY SCALING VS
UTILIZATION

When the dynamic frequency scaling
algorithm based on utilization of cores is
implemented on a 2.4 GHz processor with 4 cores,
the frequency response for that is shown in Figure
5.

Figure 5: Frequency Scaling With Utilization of
intermediate frequencies

For workloads below the lower-threshold (say
20%), the frequency is set to minimum and for
workloads greater than upperthreshold (say 80%)
the frequency is set to maximum. The average
workloads are handled by ‘ondemand’ governor
which dynamically switches between minimum
and maximum frequency in gradual steps
Performance With Time After creating our
frequency scaling policy and integrating it with
daemon, we tried to analyse the performance of
our governor under different CPU workloads. For
this we used, “CPUfreq-bench” [10] as a
benchmark program which is standard for
CPUfreq framework testing and identified worst
case performance loss when doing dynamic

frequency scaling using Linux kernel governors.
 You can specify load (100 % CPU load) and sleep
(0% CPU load) times in micro
seconds in a configuration file which will be run X
time in a row (cycles):

Figure 6: Performance Benchmark Run With
Conventional Ondemand Governor

Figure 7: Performance Benchmark Run With
Utilization Based Governor: From these two
observations we concluded that there is a
performance improvement while using utilization
based governor in comparison conventional
governor.
From the figures we can notice that at higher loads
performance in utilization based governor varies
from 95% to 120% where as conventional
ondemand governor it varies from 88% to 100%.

4.3 BATTERY STATISTICS

We collected the battery stats from both
conventional and utilization based governor with
the help of battery-status-collector [11] for time
period of 8 minutes as shown in Figure[8, 9]. It
was observed that in case of ondemand governor it
varies from

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 651
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

27% full to 21% full while utilization based
governor gives a battery drop from 35% to 28%
under same loads and same time period.

variable CPU loads for almost 30 minutes over a 78
% charged battery.

Figure 10: Battery Discharging Patterns
With/Without Frequency Scaling

Here it is evident from the graph that the slope is
more steeper for conventional than utilization
based policy where battery discharging pattern is

gradually coming down.

4.4 POWER CONSUMPTION

The power consumption statistics was gathered for
last 10 minutes of System’s CPU usage, and plotted
as the power consumed in Watts versus time
elapsed for both the conventional and utilization
based frequency scaling.
 Figure 11 shows the power consumption without
frequency scaling. It is seen that between minutes 3
and 4 when load was high, the power usage shoots
greater than 2 Watts.

Figure 11: Power Usage Without Frequency
Scaling

Figure 12: Power Usage With Frequency Scaling

But as you can see in Figure 12 with frequency
scaling the power usage remained
below 2 Watts throughout. This shows that
utilization based governor can be tuned to save
power.

5.CONCLUSION

Traditional frequency scaling involved CPU
throttling, which was not efficient. Now the
CPUfreq framework along side with acpi drivers
allows us to dynamically scale the frequency, so

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 652
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

that we can tune our system to
performance/powersave policies as needed.
 In the current implementation we are able to
scale frequency of each CPU core based on core
utilization and also user has privileges to change
CPU parameters like frequency, governor etc. We
have implemented both graphical interface using
gtk and command line interface for changing CPU
parameters. Also, we incorporated
battery status like charging, charged or
discharging for improving battery consumption.
When system becomes idle, frequency goes down
and considerable amount of power is saved with
slight loss of performance occasionally. When the
utilization goes up frequency increases to match
the performance. Our results suggest that this
mechanism provides a practical and effective way
to save significant amounts of
energy in many applications, with acceptable
performance degradation.

REFERENCES

[1] D. Brodowski and M. Dongili, “cpufreq-
info(1),” May 1991. [Online]. Available:
 http://linux.die.net/man/1/cpufreq-info
[2] G. Staikos and M. Dongili, “Installation guide
for Cpufreqd,” August 2011.
 [Online]. Available:
http://www.linux.it/∼malattia/wiki/index.php/Cpu
freqd
[3] PowerNow! [Online]. Available:
http://en.wikipedia.org/wiki/PowerNow!
[4] V. Pallipadi, A. Belay, and S. Li, “cpuidle. Do
nothing efficiently..” July
 2007. [Online]. Available:
http://www.linuxsymposium.org/archives/OLS/
Reprints-2007/pallipadi-Reprint.pdf
[5]Pallipadi,“EnhancedIntelSpeedStepTechnologya
ndDemandBasedSwitchingonLinux,”February2009
.[Online].Available:http://software.intel.com/en-
us/articles/ enhanced-intel-speedstepr-
technology-and-demand-based-switching-on-
linux/
[6] proc Linux Programmer’s Manual (5). [Online].
Available http://www.
linuxhowtos.org/manpages/5/proc.htm
[7] /proc/stat explained. [Online]. Available:
http://www.linuxhowtos.org/System/procstat.htm
[8] T. Gale and I. Main. GTK+ 2.0 Tutorial.

[Online].Available:http://developer.gnome.org/gtk-
tutorial/2.90/
[9] L. Brown, A. Keshavmurthy, R. Moore, D. S. Li,
V. Pallipadi, and L. Yu, “ACPI in Linux
Architecture, Advances, and Challenges,”(Intel
Open Source Technology Center), 2005. [Online].
Available: http:
//www.linuxsymposium.org/2005/linuxsymposiu
m procv1.pdf
[10] cpufreq-bench. [Online]. Available:
http://lwn.net/Articles/339862/
[11] BATTERY-STATS-COLLECTOR(8). [Online].
Available: http://manpages.
ubuntu.com/manpages/natty/man8/battery-stats-
collector.8.html
[12] A. Mallik, B. Lin, G. Memik, P. Dinda, and R.
P. Dick, “User driven frequency scaling,” vol. 5,
Department of Electrical Engineering and
Computer Science, Northwestern University,
July-December 2006, pp. 1–4.
[13] G. Kroah-Hartman, Linux in a nutshell.
O’Reilly, 1998, vol. 3.
[14] V. Pallipadi and A. Starikovskiy, “The
ondemand governor. past, present, and future,”
vol. 2, Proceedings of the Linux Symposium, July
2006, pp. 1–8. IJSER

http://www.ijser.org/

